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A laminated composite beam, representative of a flexible beam, containing a layer of
magnetostrictive material, is considered as a distributed parameter system and its dynamic
behavior has been investigated. The magnetostrictive layer is used to induce actuation
forces to control vibration in the beam, following a velocity feedback control law. The
dynamic behavior of the beam is studied to illustrate the effect of the lay-up sequence, the
weight of the coil, the control gain and the concentrated mass on the vibration suppression
capability. Numerical results have been given for three different lay-up sequences of the
laminates, representing a wide range of stiffness variation. The controllability of the
first four modes, the corresponding coil current and the stresses have also been discussed.
The results clearly indicate viability of developing a smart flexible beam with embedded
magnetostrictive particle layers.
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1. INTRODUCTION

Flexible robot manipulators are used in many modern industries, such as the automobile,
electronic and aerospace industries, to achieve high speed automation. They are usually
in the form of cantilever beams attached to a rotor, intended to pick up a payload at a
source point and deliver it smoothly at its destination in a horizontal plane. This study
is restricted to horizontal plane motion, as it represents the most common motion
encountered in the pick and place type of robot. At the time of delivering the object, a
certain amount of vibration of the beam is unavoidable, as it is highly flexible. The
reduction of such vibration improves the performance of the robot. Although passive
damping reduces vibration, it is now well recognized that to achieve significant
improvement in the overall performance of flexible robot manipulators, new technologies
should be explored. Smart robots using smart structures technology are one promising
candidate. They typically have integrated sensors and actuators interconnected by adaptive
real time controllers. Among others, the most promising candidate materials for sensors
and actuators are shape memory alloys, piezoelectric and magnetostrictive materials.
Vibration suppression of flexible beams using shape memory alloy and piezoelectric
actuators have received considerable attention (see, for example, references [1–3]).
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However, there appear to be no investigation, so far, on the use of magnetostrictive
materials for flexible beam application. The purpose of this paper is to bring out the
effectiveness of the magnetostrictive materials for this application.

The magnetostrictive material, Terfenol-D, has certain unique advantages over other
materials, such as (1) the possibility of remote excitation (2) the ability to retain the
magnetostrictive property both in a bulk form such as rods and in a particle form, and
(3) easy embedability into the host material. In particular, the magnetostrictive material
in particle form can be embedded into modern fiber reinforced plastic layered composites
without compromising the structural integrity. Notwithstanding the disadvantage of the
higher density of this material as compared to other smart materials, it can still be viewed
as an attractive candidate for developing vibration control technology for certain
applications, such as robot manipulators, in view of the feasibility of realizing higher
actuation forces and the consequent gains in performance.

Broadly, the vibration control of smart structures can be attempted in two
ways; viz., discrete actuation and distributed actuation. As early as 1957, Wise [4]
reported the feasibility of using the magnetostrictive property to develop actuation
forces. Magnetostriction-based discrete actuation has attracted research interest ever
since (see, for example references 5–7]). In reference [8], the usefulness of magnetostrictive
material for helicopter rotor servoflap control has been demonstrated. Recently,
the development of compact magnetostrictive mini-actuators for smart structure
applications has been reported by the authors [9, 10]. Magnetostrictive material, under
the name of Terfenol-D, is now available both in bulk as well as particle form.
Most of the investigations to date propose the use of this material in bulk form.
However, smart structure technology based on the particle form is more attractive
from the standpoint of manufacturing, since the magnetostrictive material in particle
form can be easily embedded in laminated composites. In the present study, we use this
approach.

The magnetostrictive particle layer exhibits the same constitutive relationship as
the monolithic layer. However, the magnetomechanical coupling coefficient differs,
being dependent on the prestress, the magnetic field and the orientation. For purposes
of illustration, in this work, we have assumed perfect orientation and zero pre-stress.
Hence, when a magnetic field is applied, the magnetostrictive particle layers elongate,
following the same constitutive equations as the monolithic layer.

A flexible cantilever laminated composite beam containing an embedded layer of
Terfenol-D particles has been investigated. Choosing a velocity feedback constant gain
control, the feasibility of vibration reduction is demonstrated.

2. FORMULATION

A typical composite beam representative of a flexible beam is shown in Figure 1. It is
considered as a cantilever beam fixed to the rotor at x=0 and free at x=L, carrying a
payload of mass m0 at a distance L3 from the fixed end. The beam is made up of n layers
with n-l layers of CFRP (Carbon Fiber Reinforced Plastic) plies and one layer of
Terfenol-D particles. The Terfenol-D particles in the mth layer, located at a distance ȳ,
are set in a suitable resin, such as epoxy, and bonded to the neighboring CFRP layers
without any possibility of slip. In the present analysis the weight of the resin in the mth
layer is ignored. A series of closely packed magnetic coils, insulated from each other,
enclose the beam over a part of the beam from L1 to L2. By applying the required current
to these coils, the necessary magnetic field intensity and hence the actuation stress are
induced in the Terfenol-D layer in the region L1 to L2. The widths of the coils are made
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Figure 1. A typical laminate composite beam (a) with an embedded magnetostrictive layer (b).

as small as possible to enable a required variation of control forces in this region.
All CFRP layers are assumed to behave as a linear orthotropic medium, whereas the
Terfenol-D layer behaves as an equivalent isotropic medium. The fiber orientations in
CFRP layers are arbitrary. The cross-section of the beam is assumed to be uniform about
the z-axis. The deformations in the x–z plane are infinitesimally small, since the beam has
very high flexural stiffness in the x–z plane as compared to the x–y plane. At first the beam
has no applied dynamic forces.

At the instant at which the rotor stops, when the destination is reached, it is assumed
that the beam receives an applied velocity profile according to the mode shape of the beam.
This velocity is considered as initial velocity with a zero initial displacement. The dynamic
motion of the beam subsequent to this instant may be modelled by considering the
displacement field in the form,

U(x, y, z, t)= u(x, t)− yv,x , V(x, y, z, t)= v(x, t), W(x, y, z, t)=0. (1)
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The term u in the expression U is included to take into consideration the extension effect
arising due to asymmetry in the lay-up of the beam.

The strain field consists of a single non-zero component of strain,

ex = u,x − yv,xx . (2)

The constitutive relation of all CFRP layers [11] is of the form

s(i)
x =Q�(i)

11o
(i)
x , (3)

where the superscript i represents the layer number and

Q�(i)
11 =Q(i)

11 cos4u(i) + 2(Q(i)
12 +2Q(i)
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21 = n(i)
21E(i)

11/(1− n(i)
12n

(i)
21), Q(i)

66 =G(i)
12. (4)

The constitutive relation of the magnetostrictive layer is [12],

ox =Ss+ dH, (5)

Considering the closed loop velocity proportional feedback control, the magnetic field
intensity is expressed as,

H(x, t)= k1I(x, t) for L1 E xEL2, (6)

where I(x, t)= g(t)v̇(x, t), k1 is the coil constant, and g is the control gain. Rewriting
equation (6), we obtain H(x, t)= cv̇(x, t), where c= k1g.

Since it is difficult to obtain the exact solution for a cantilever beam, we attempt an
approximate solution, starting with

v(x, t)= s
n

k=1

L(k)
1 (t)X(k)

1 (x), u(x, t)= s
n

k=1

L(k)
2 (t)X(k)

2 (x), (7)

where 0E xEL, te 0. L1 and L2 are functions of t to be determined, X1 and X2 are
functions of x to be chosen, and superscript k refers to the mode number. In the interests
of simplicity, in the present analysis it is assumed that the eigenfunctions of the beam are
uncoupled, as

X(k)
1 = ak0sin Ck

L
x−sinh

Ck

L
x1+ bk 0cos

Ck

L
x−cosh

Ck

L
x1,

X(k)
2 = sin

(2k−1)px
2L

, k=1, 2, . . . , (8)

where ak =sin Ck −sinh Ck and bk =cos Ck +cosh Ck . In the first part of equation (8),
the eigenfunctions correspond to the transverse vibration of a cantilever beam. The
eigenfunction in the second part of equation (8) represents the eigenfunction of a
longitudinal vibration of a uniform thin beam.

For the first four modes, the value of Ck are given as, C1 =1·875, C2 =4·694, C3 =7·855,
and C4 =11·0. For example, k=1 corresponds to the response considering only the first
mode, which is the largest in most cases. In the present study we are interested in the
response due to application of an initial velocity profile distribution of the type,

v̇(k)(x, 0)= s
n

k=1

X(k)
1 (x)L� (k)

1 (0), (9)
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with L� (k)
1 (0)=1 for k=1, 2, 3, 4. The responses of higher modes are also estimated in a

qualitative sense by the present procedure, as it ignores the coupling between modes arising
out of feedback control and does not include the effect of spillover. However, the main
coupling effect between longitudinal and transverse motion is retained. Hence, in what
follows, the formulation is applicable for each mode and the superscript k is dropped
for convenience.

Consider the Hamilton’s principle in the form,

d g
t2

t1

(Ue −Te ) dt0 0, (10)

where

Ue = 1
2gV

sxox dV, Te = 1
2gV

r(u̇2 + v̇2) dV, (11)

and where VWR3; that is, the volume of the beam. In the above equation, ox includes the
strain due to the magnetostrictive actuation, as given by equation (5).

Using this form of Hamilton’s principle, the governing equations of motion are
deduced as,
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The detailed boundary value problem is given in Appendix A. Considering the form
(L1, L2)= (Y1, Y2) elt and substituting in equations (12) for the non-trivial solution, we
obtain,

b A+M2l
2

−B
−(B+F1cl)

D+F2cl+M1l
2 b0 0. (14)

Equation (14) gives two sets of complex eigenvalues, one representing primarily
transverse motion and the other primarily axial motion. Frequencies associated with the
axial motion are very high in slender flexible beams as compared to frequencies associated
with transverse motion. Since we are concerned with primarily transverse motion, the
eigenvalue of interest is the lower one of the form

l=−a2 jvd . (15)

Consider initial conditions of the type,

L1 =L2 =L� 2 =0, L� 1 =1. (16)

The expressions for u and v may be obtained as

n=
X1(x)
vd

e−at sin vdt, u=
X2(x)

vd
f e−at sin vdt, (17)

where

f=
−(B+F1cl)

A+M2l
2 , (18)

In other words, f is the ratio of the magnitude of generalized time coordinate of
longitudinal vibration over the magnitude of generalized time coordinate of transverse
vibration.

From equation (5) it follows that the actuation stress in the magnetostrictive layer for
velocity proportional feedback control is

sa (x, t)=−EmdH(x, t), (19)

where

H(x, t)= cv̇(x, t) for L1 E xEL2. (20)

Now, from equations (17) and (19), the actuation stress can be obtained as,

sa (x, t)=−
EmdcX1(x)

vd

d
dt

[e−at sin (vdt)] for L1 E xEL2. (21)

2.1.  

From equations (6), it follows that the general expression for the coil current is,

I(x, t)= (c/k1)v̇(x, t), (22)

based on the standard circular coil [13], where the magnetic field at the center is given
as H=(NI)/zl2 +4r2

c = k1I. We can obtain the constant k1 by assuming that the
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region between L1 and L2 is divided into p coils with an equivalent radius rc as (see
Figure 1)

k1 = n0 01+
4r2

c p2

(L2 −L1)21
−1/2

, (23)

where, n0 is the number of turns per unit length of the coil.
The current in the qth coil can be written as,

I(xq , t)= (c/k1)X1(xq )L� 1(t), (24)

where

xq =L1 + (2q−1)(L2 −L1)/(2p) for q=1, 2, . . . , p. (25)

I(xq , t) can be written in another form:

I(xq , t)=
c

k1vd
X1(xq )

d
dt

[e−at sin (vdt)]. (26)

3. NUMERICAL RESULTS AND DISCUSSION

The lay-up sequences of three laminated beams studied are shown in Table 1. Here
m represents the magnetostrictive layer and other numbers represent the fiber angles
with respect to the x-axis in the x–z plane in the CFRP layers. For example in
[245/02/902/0/245/m], ‘‘2 45’’ denotes one layer with a fiber angle of +45 degrees
and the next layer with fiber angle of −45 degrees. The ‘‘/’’ is used to separate the
adjacent layers with different fiber angles. The next layers are denoted by ‘‘02’’, where the
subscript ‘‘2’’ denotes the number of layers with the same fiber angle, so two layers
with a fiber angle of 0 degrees are used. ‘‘m’’ is an abbreviation for ‘‘magnetostrictive
particle layer’’. All beams considered have ten layers of 1 mm thickness each. The
material properties of the CFRP layers are E11 =138·6 GPa, E22 =8·27 GPa,
G12 =4·14 GPa, n12 =0·26 and r=1824 kg/m3. The properties of the Terfenol-D layer are
Em =26·5 GPa, rm =9250 kg/m3 and d=1·67×10−8 m/A. The effective radius of coils
enclosing the magnetostrictive layer rc is taken to be 10 mm, with the coil density,
no turns/meter, made up of 38 AWG copper wires with a density of 8844 kg/m3. For
all numerical investigations, L=1 m and L1 =0. The range 0–L2 is divided into ten
coils, and are numbered from 1 to 10 starting from the fixed end (see Figure 1). Ten
coils were chosen for illustration purposes and the number have no other significance.
The weight of coil per unit length with n0 =104 is 3·15 kg, whereas it is 31·54 kg with
n0 =105.

In Figures 2–5 are shown the results of first four modes separately for the case
L2 =0·6 m, L3 =0·9 m, m0 =1 kg, and c=104. A comparison of the uncontrolled and
controlled transverse motion of the tip of the cantilever beam is shown in Figures 2a–5a.

T 1

Details of the laminates studied

Laminate number Lay-up sequence

1 [245/02/902/0/245/m]
2 [909/m]
3 [09/m]
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Figure 2. Vibration suppression: the fundamental mode (v1 =43·43 rad/s, a1 =−1·09 rad/s). (a) Variation of
the tip displacement; (b) the control current in the tenth coil; (c) the actuation stress at 0·57L; (d) the elastic
stress at 0·57L.

It may be noted that the fundamental mode is suppressed in about 4 seconds, whereas
the second, third and fourth modes are suppressed in about 1·5, 0·5 and 0·2 s, respectively.
Similarly, the variation of current in the coil carrying the highest current is shown in
Figures 2(b)–5(b). It may also be noted that different coils require different levels of current
to generate a coordinated vibration suppression action. In the present analysis, the coil

Figure 3. Vibration suppression: the second mode (v2 =266·84 rad/s, a2 =−2·77 rad/s). (a) Variation of the
tip displacement; (b) the control current in the eight coil; (c) the actuation stress at 0·45L; (d) the elastic stress
at 0·45L.
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Figure 4. Vibration suppression: the third mode (v3 =762·14 rad/s, a3 =−9·17 rad/s). (a) variation of the tip
displacement; (b) the control current in the fifth coil; (c) the actuation stress at 0·27L; (d) the elastic stress at
0·27L.

currents are proportional to the velocity at the location of the coil. Hence, different coils
are selected as the primary coil to suppress the vibration in different modes as illustrated
in these figures. It may be noted that the maximum current required varies from mode
to mode, from about 400 mA to 800 mA. The actuation stresses induced by the coil

Figure 5. Vibration suppression: the fourth mode (v4 =1490·08 rad/s, a4 =−32·46 rad/s). (a) Variation of the
tip displacement; (b) the control current in the fourth coil; (c) the actuation stress at 0·21L; (d) the elastic stress
at 0·21L.
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carrying the maximum current are given in Figures 2(c)–5(c). The elastic stresses in the
magnetostrictive layer are shown in Figures 2d–5d for various modes. Both the elastic and
actuation stresses are in the range 3–5 MPa, well within the allowable stress for
magnetostrictive materials.

To illustrate the effect of coupling between longitudinal motion (along the x-axis) and
the vibration characteristics of the beam, two cases are studied. The results obtained are
shown in Table 2. Case 1 refers to the results obtained when the longitudinal inertia due
to M2 is included, whereas case 2 represents the results when the coupling is neglected.
Inspection of Table 2 shows that the effect of M2 has a negligible influence on vd and f.
The ratio of longitudinal to transverse motion, f is less than one percent in all three
laminates considered. However, the coupling has some influence on vd and a. The influence
on a is of the order of 5–6% and that on vd is less than 1%. The parameter a plays a
significant role in the present study, as it represents the damping pattern. Hence, this
coupling is included in all calculations.

Laminate 1 was chosen to study the influence of coil mass. The results are tabulated
in Table 3. By neglecting coil mass vd becomes overestimated slightly, by about 0·5% at
the fourth mode. The influence on a is much larger, of the order of 8–9%, and it has little
influence on f. It may be noted that the coil mass is about 9·5% of the beam mass
distributed in a region of about 60% of the span near the cantilever fixed end, and so the
relatively small effects on vd and f are to be expected. However, since its influence on a

is significant, the coil mass cannot be ignored.
Next, the effect of coil span length is explored. From Figure 1, it may be noted that

the coils enclosing the magnetostrictive layer cover only part of the span of the beam and
the total range of the ten coils put together is L2. Results for three values of L2 are given
in Table 4. ts is the vibration suppression time. For purpose of this work, 22% error is
chosen as the acceptable error. Reduction of L2 has very little effect on vd as should be
expected. However, the values of a are substantially affected resulting in large influence
on vibration suppression times. For example, the vibration suppression time for the first
mode is 4 s when L2 =0·6 m, whereas the time increases to 15 s when L2 is reduced to
0·2 m. However, it may be noted that in the case of higher modes, this is not always true.
For example, the second mode becomes suppressed faster with L2 =0·2 m than with
L2 =0·4 m. This variation suggests that for each mode, the best location of the coil is
different perhaps coinciding with highly stressed areas of the beams. This needs further
detailed investigation.

The effect of increasing the weight of the concentrated mass located at 0·7L from
1 kg to 3 kg is shown in Table 5. The frequencies reduce by a small amount as
expected. The absolute value of a also decreases from 5%–10%. The corresponding
plots obtained for the first mode are shown in Figures 6 and 7. No significant loss of
vibration suppression time due to an increase in the weight of the concentrated mass can
be observed.

In Table 6, two cases with an order of magnitude increase in control gain parameter
and number of turns in the coil are compared. Case 1, with c=104, has twice the coil
span length compared to that of Case 2, whose control gain of which is c=105.
The vibration suppression times T and the highest initial coil current I are also given.
This data indicates that even with a small coil span of 0·1L, it is possible to control
the first four modes. It may be noted that the coil current with c=105 is somewhat
high for higher modes, which of course can be brought down by a further increase of coil
turns.

Finally, the effect of flexural rigidity on the vibration suppression is studied.
Amongst the ten layered beams considered here, [909/m] has the lowest flexural rigidity
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T 4

The effect of span length over which the coil encloses the magnetostrictive layer (laminate
1, L3 =0·9L, n0 =104 turns/m, mc =3·15 kg, m0 =1 kg, c=104)

L2 =0·6 m L2 =0·4 m L2 =0·2 m
Mode ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV

number vd a ts vd a ts vd a ts

1 42·415 −1·085 4 42·648 −0·732 5 42·695 −0·261 15
2 266·829 −2·769 1·5 272·576 −0·673 5 276·081 −4·167 1
3 762·081 −9·166 0·5 765·233 −12·514 0·3 782·855 −7·866 0·5
4 1489·73 −32·46 0·2 1513·348 −37·444 0·1 1531·53 −0·918 5

and the [09/m] laminate has the highest flexural rigidity, and the performance of
these beams is compared in Table 7. Low values of f in these two extreme cases justify
the neglect of longitudinal inertia for this class of beams. The value of a indicates that
it is possible to suppress the vibration in a reasonable time. The details of the vibration
suppression of the fundamental mode are shown in Figures 8 and 9. The pattern is the
same for higher modes as well.

In the present analysis, all coils receive current as per the control law, which has a
constant gain for the entire span. Results indicate that higher modes do not always become
suppressed with an equal facility as the fundamental mode, although, generally, higher
modes also become suppressed. It may be expedient to provide different gains to different
coils to achieve the required pattern of vibration suppression. Furthermore, the choice of
velocity proportional feedback was driven by the desire to keep the mathematics simple
and emphasize the feasibility. A control law that uses a relative angular velocity as the
feedback signal would be more efficient. It is also possible to use some of the coils for
sensing and the rest for actuation, to develop an integrated smart structural system. These
aspects deserve further investigation.

4. CONCLUSIONS

A cantilevered laminated composite beam, representative of a flexible robot
manipulator, containing a layer of magnetostrictive particles has been investigated
to bring out the vibration suppression possibilities. Ten closely spaced coils spread
over part of the beam from the fixed end are used to induce actuation stresses in the
magnetostrictive layer. Keeping in view possible application to robot arms, a concentrated
mass located at a certain distance on the span is also included. The system is modelled
as a distributed parameter system. The response of the beam in the first four modes to

T 5

The effect of concentrated mass m0 (laminate 1, c=105, L2 =0·1L, n0 =105 turns/m,
mc =31·5 kg/m)

L3 =0·7 m, m0 =1 kg L3 =0·7 m, m0 =3 kg
Mode ZXXXXCXXXXV ZXXXXCXXXXV

number vd a vd a

1 43·916 −0·806 41·813 −0·731
2 279·033 −22·311 274·855 −21·643
3 754·935 −107·521 712·392 −95·527
4 1495·984 −244·758 1462·454 −233·624
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Figure 6. Vibration suppression: the fundamental of laminate 1 (L2 =0·1 m, L3 =0·7 m, mc =31·5 kg/m,
m0 =1 kg, c=105, n0 =105 turns/m). (a) Variation of the tip displacement; (b) the control current in the tenth
coil; (c) the actuation stress at 0·095L, (d) the elastic stress at 0·095L.

Figure 7. Vibration suppression: the fundamental of laminate 1 (L2 =0·1 m, L3 =0·7 m, mc =31·5 kg/m,
m0 =3 kg, c=105, n0 =105 turns/m). (a) Variation of the tip displacement; (b) the control current in the tenth
coil; (c) the actuation stress at 0·095L; (d) the elastic stress at 0·095L.

an initial velocity distribution along the span similar to each mode shape has been
investigated adopting constant gain and a velocity proportional feedback control law.
Detailed parametric study has been carried out to illustrate the effect of various parameters
involved. The results indicate viability of developing cantilever beams with embedded
magnetostrictive layers with a vibration suppression capability, for various applications
such as robot manipulators and helicopter rotor blades.
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Figure 8. Vibration suppression: the fundamental of laminate [909/m] (L2 =0·1 m, L3 =0·7 m, mc =31·5 kg/m,
m0 =3 kg, c=105, n0 =105 turns/m). (a) Variation of the tip displacement; (b) the control current in the tenth
coil; (c) the actuation stress at 0·095L; (d) the elastic stress at 0·095L.
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Figure 9. Vibration suppression: the fundamental of laminate [09/m] (L2 =0·1 m, L3 =0·7 m, mc =31·5 kg/m,
m0 =3 kg, c=105, n0 =105 turns/m). (a) Variation of the tip displacement; (b) the control current in the tenth
coil; (c) the actuation stress at 0·095L; (d) the elastic stress at 0·095L.



. .    .148

REFERENCES

1. T. B and J. E. H, J. 1985 Journal of Guidance, Control and Dynamics 8, 1199–1206.
Distributed piezoelectric polymer active vibration control of a cantilever beam.

2. E. F. C and J. D L 1987 American Institute of Aeronautics and Astronautics Journal
25(10), 1373–1385. Use of piezoelectric actuators as elements of intelligent structures.

3. A. B, K. I and J. MC 1990 Journal of Sound and Vibration 140, 437–456. Active
vibration control of flexible beams using shape memory actuators.

4. E. M. W 1957 Production Engineer, 162–166 Magnetostriction: a new design tool.
5. R. S. R 1988 Modelling and Simulation 19. Active vibration isolation using a magnetostrictive

actuator.
6. M. W. H, M. D. B and J. U 1989 Journal of Sound and Vibration 134,

507–519. Attenuation and transformation of vibration through active control of magneto-
strictive Terfenol.

7. J. Dyberg 1986 1st International Conference on Giant Magnetostrictive Alloys and Their Impact
on Actuator and Sensor Technology, Marbella, Spain. Magnetostrictive rods in mechanical
applications.

8. R. G. S, T. T. H and F. K. S 1995 Proceedings of SPIE—Smart Structures
and Integrated Systems (I. Chopra, editor), 28–37. Application of the magnetostrictive smart
materials in rotor servoflap control.

9. M. A and J. B 1994 Smart Material and Structures, 3, 83–91. A theoretical and
experimental study of magnetostrictive mini actuators.

10. M. A and J. B 1994 Smart Material and Structures 3, 383–390. Magnetostrictive mini
actuators for smart structure application.

11. J. R. V and R. L. S 1990 The Behavior of Structures Composed of Composite
Material. Dordrecht: Kluver Academic.

12. A. E. C 1980 Ferromagnetic Materials. Amsterdam: North-Holland. See Chapter 7:
Magnetostrictive rare earth–Fe2 compounds.

13. J. D. K 1992 Electromagnetics, 233. New York: McGraw-Hill.

APPENDIX A: BOUNDARY VALUE PROBLEM

Substituting equations (2), (3) and (5) into equation (11), and then substituting equation
(11) into (10) we obtain

A11u,xx −B11v,xxx −F1cv̇,x −mü=0, −B11u,xxx +D11v,xxxx +F2cv̇,xx +mv̈=0, (A1)

where

A11, B11, D11 = s
n

i=1 g
yi+1

yi

Q�(i)
11(1, y, y2) dy,

F11, F22 =g
ym+1

ym

Em d(1, y) dy, m= s
n

i=1 g
yi+1

yi

r(i) dy. (A2)

The boundary conditions at x=0 and L are,

either v=0 or B11u,xx −D11v,xxx −F2cv̇,x =0,

either v,x =0 or B11u,x −D11v,xx −F2cv̇=0,

either u=0 or A11u,x −B11v,xx −F2cv̇=0. (A3)

The above formulation is valid for the entire length of the beam since the lay-up is
uniform. The existence of actuation stresses in the region 0E xEL2 will enter the Galerkin
technique through the integral and causes no serious formulation errors.

Broadly, there are two alternative ways to obtain the solution. The first method consists
of obtaining a direct solution to the governing differential equations. Following the second
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method, the solution is obtained in a Galerkin sense by starting with a suitable admissible
function and using equation (10). The second approach is adopted in this paper.

APPENDIX B: NOMENCLATURE

A, B, D, M1, M2 cross-sectional constants
c control gain parameter
d magnetomechanical coupling coefficient
E11, E22, G12, n12 material constants of CFRP layer
Em Young’s modulus of the magnetostrictive layer
F1, F2 control force parameters
g control gain
H magnetic field intensity
I(x, t) coil current
i number of layer
k1 coil constant
L span of the beam
L1, L2 starting and end position of coils on the span
L3 location of the concentrated mass
l length of the coil
m0 concentrated mass
m mass of the beam per unit length of span
mc mass of the coil per unit length of span
N number of turns in the coil
nc number of turns in the coil
n0 number of turns per unit length
Qij reduced elastic constant of CFRP layers
Q�ij transformed reduced elastic constant of CFRP layers
rc coil radius
S compliance of the magnetostrictive layer
Te kinetic energy of the beam
t1, t2 time instant
U, V, W displacement along x, y, z-axes respectively
Ue strain energy of the beam
u, v displacement along x- and y-axis
wc width of the coil
x, y, z Cartesian coordinates
Y1, Y2 amplitude of the generalized time coordinate
a exponent representative of vibration suppression
d variational symbol
o strain
u orientation of fibers with respect to x-axis
L1, L2 generalized time coordinate
l eigenvalue
n Poisson ratio
r mass density of CFRP layers
rm mass density of magnetostrictive layer
s stress
sa actuation stress
f amplitude ratio of longitudinal displacement to transverse displacement
V total volume of the beam
vn natural frequency of the beam without control
vd frequency of the beam with control
� · � time derivative of � �
� �,x derivative of � � with respect to x


